Let the number be x.
So, x + 5 is divisible by LCM of 9, 10, 15, 20
LCM = 2^2 \cdot 3^2 \cdot 5 = 180
x + 5 = 180 \times 2 = 360 \Rightarrow x = 355
\vec{A} = (2x + 1)\hat{i} + (x^2 - 6y)\hat{j} + (xy^2 + 3z)\hat{k}
\nabla \cdot \vec{A} = 2 - 6 + 3 = -1 \neq 0
Not solenoidal ❌
\nabla \times \vec{A} = (2xy)\hat{i} - (y^2)\hat{j} + (2x)\hat{k} \neq \vec{0}
Not conservative ❌
\vec{A} is neither conservative nor solenoidal.
Given vector field:
\vec{A} = (2x + 1)\hat{i} + (x^2 - 6y)\hat{j} + (xy^2 + 3z)\hat{k}
\nabla \cdot \vec{A} = 2 - 6 + 3 = -1
The divergence is negative at every point, so \vec{A} is a sink field.
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.